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​1. Introduction​
​Why This Handbook?​

​Preparing for React Native interviews can feel confusing because the expectations vary widely​
​depending on the company, role, and project type. One round may focus heavily on JavaScript​
​or TypeScript fundamentals, another may test your understanding of React, hooks, lifecycle, or​
​performance. At senior levels, you’ll often be asked about architecture, native modules,​
​bridging, large-scale app design, and how you optimize cross-platform performance.​

​That’s exactly why this handbook was created to be your one-stop guide for React Native​
​interview preparation. Instead of learning from scattered YouTube videos, blogs, GitHub repos,​
​and outdated tutorials, this book puts everything together in a structured format.​

​As a developer, I’ve personally experienced how difficult it is to prepare for React Native​
​interviews. You end up juggling between React docs, JavaScript guides, native platform notes,​
​and multiple community libraries. There wasn’t a single resource that combined real interview​
​questions, clean explanations, practical examples, and scenario-based discussions so I decided​
​to build one.​

​This handbook is the result of years of interview experience, combined with questions collected​
​from real interviews across product companies, startups, and service-based organizations. I​
​documented every challenging question I came across not just to improve myself, but to help​
​developers prepare smarter, faster, and with confidence.​

​Inside this handbook, you’ll find:​

​●​ ​Topic-wise categorized questions covering everything: JavaScript, TypeScript, React​
​concepts, React Native APIs, native modules, performance, architecture, DevOps, and​
​more​

​●​ ​Coverage for all levels — from freshers starting with React basics to senior developers​
​and leads preparing for design and architecture rounds​

​●​ ​Scenario-based discussions that reflect real-world interview patterns​

​●​ ​Latest React Native ecosystem topics like Fabric Architecture, TurboModules, Hermes,​
​Reanimated, state management trends, and cross-platform optimizations​

​No matter your experience level, this handbook will give you a clear roadmap of what to expect​
​and how to prepare so you walk into your interview confident and well-prepared.​

​Created By :​​Anand Gaur​
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​How to Use This Handbook Effectively​
​Think of this handbook as a structured preparation guide instead of random notes. Here’s the​
​ideal order:​

​1. Start with fundamentals​

​If you're a fresher, begin with JavaScript and TypeScript basics, ES6 concepts, React​
​fundamentals, JSX, components, and the React Native lifecycle.​

​2. Move into UI development​

​Learn styling, Flexbox, FlatList optimizations, navigation (React Navigation), gestures,​
​animations, and platform-specific UI behavior.​

​3. Deep-dive into state management​

​Practice with Context API, Redux, Redux Toolkit, Zustand, MobX, Recoil, and understand when​
​to choose which.​

​4. Explore data handling and async programming​

​Networking with fetch/axios, caching, offline mode, async/await, parallel API calls, promises,​
​WebSockets.​

​5. Grow into advanced concepts​

​React Native architecture, Fabric, TurboModules, native modules using Swift/Kotlin,​
​performance tuning, bundle optimization.​

​6. Don’t ignore DevOps and Security​

​App builds, release processes (Play Store, App Store), CI/CD, OTA updates (CodePush), SSL​
​pinning, secure storage, crash analytics.​

​7. Wrap up with scenario-based questions​

​These sharpen your real-world thinking and prepare you for problem-solving rounds like:​

​●​ ​How do you optimize a complex FlatList?​
​●​ ​How do you manage state in a large-scale app?​
​●​ ​How would you design offline-first data flow?​
​●​ ​How to integrate a native Android/iOS SDK in RN?​

​Following this sequence ensures you build a complete understanding instead of studying​
​random topics without direction.​

​Created By :​​Anand Gaur​
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​Levels of React Native Interviews​

​Fresher / Junior (0–2 years)​

​Expect questions on:​

​●​ ​JavaScript basics, ES6, async/await​
​●​ ​React fundamentals: components, props, state, hooks​
​●​ ​React Native basics: views, styling, navigation, API calls​
​●​ ​FlatList, basic forms, error handling​
​●​ ​Differences between React and React Native​

​Mid-level (2–5 years)​

​Focus shifts to:​

​●​ ​Performance optimization concepts​
​●​ ​State management (Redux, Context, Zustand)​
​●​ ​React Navigation internals​
​●​ ​Local storage (AsyncStorage, MMKV, SQLite)​
​●​ ​Native APIs, lifecycle, animations​
​●​ ​Debugging and profiling​
​●​ ​TypeScript best practices​

​Senior (5+ years)​

​You’ll be evaluated on:​

​●​ ​Designing scalable apps and modular architectures​
​●​ ​Clean architecture patterns in RN​
​●​ ​Native module creation and bridging​
​●​ ​Performance optimization (Hermes, re-renders, batching, virtualization)​
​●​ ​CI/CD pipelines, OTA updates (CodePush)​
​●​ ​Leading teams, mentoring, and reviewing code​
​●​ ​Handling large, cross-functional projects​

​Architect / Lead​
​Interviews go far beyond coding:​

​●​ ​Enterprise-level architecture, micro-frontends, monorepos​
​●​ ​Large-scale state management strategies​
​●​ ​Decisions around Fabric, TurboModules, and native integration​
​●​ ​System design for mobile​
​●​ ​CI/CD, automation, distribution workflows​
​●​ ​Security best practices​
​●​ ​Communication, planning, conflict resolution​

​Created By :​​Anand Gaur​
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​Common Interview Patterns in Product & Service​
​Companies​

​Product Companies (FAANG, Unicorns, High-Scale Startups)​

​Expect deeper rounds like:​

​●​ ​JavaScript/TypeScript fundamentals & async challenges​
​●​ ​React internals, reconciliation, rendering strategies​
​●​ ​State management patterns, re-render optimization​
​●​ ​System design for mobile apps, scalability​
​●​ ​Architecture discussions (monorepo, modularization)​
​●​ ​Performance tuning: memory, FPS, bridging overhead​
​●​ ​Behavioral rounds​

​Service Companies (TCS, Accenture, Infosys, Wipro, etc.)​

​Focus is more practical and implementation-oriented:​

​●​ ​UI development, navigation, basic animations​
​●​ ​API integration, forms, validation, error handling​
​●​ ​Storage, offline sync, Redux basics​
​●​ ​Standard libraries and ecosystem knowledge​
​●​ ​Scenario-based problem-solving​
​●​ ​Faster interview cycles, fewer rounds​

​Created By :​​Anand Gaur​
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​2. React Native Basics​

​Q1: What is React Native?​
​●​ ​React Native is an​​open-source mobile application​​framework​​used to build​​Android​

​and iOS apps​​.​

​●​ ​It was​​developed by Facebook (now Meta)​​and first​​released in​​2015​​.​

​●​ ​React Native allows developers to write apps using​​JavaScript or TypeScript​​, following​
​React concepts​​such as​​components, props, state, and​​hooks​​.​

​●​ ​It supports a​​single codebase​​that works on both​​Android​​and iOS​​, which​​reduces​
​development time and effort​​.​

​●​ ​React Native uses​​real native UI components​​like​​View,​​Text, and Image​​, and​​does​
​not use HTML or WebView​​, so apps look and feel like​​native apps​​.​

​●​ ​React Native applications provide​​near-native performance​​,​​which is suitable for most​
​business and consumer applications​​.​

​●​ ​When required, developers can also write​​native code​​using​​Kotlin/Java for Android​
​and​​Swift/Objective-C for iOS​​, giving more​​flexibility​​.​

​●​ ​React Native is​​widely used in the industry​​and is​​adopted by companies like​
​Facebook, Instagram, and Shopify​​, with strong​​community​​support​​.​

​Q2: Why did you choose React Native for your projects?​

​1. Single codebase for multiple platforms​

​●​ ​React Native allows writing​​one codebase​
​●​ ​The same code works on:​

​○​ ​Android​
​○​ ​iOS​

​●​ ​This reduces development and maintenance effort​

​2. Faster development​

​●​ ​React Native speeds up development​
​●​ ​Features like​​hot reloading​​help see changes instantly​
​●​ ​Faster development leads to quicker releases​

​3. Near-native performance​

​●​ ​React Native uses​​real native UI components​
​●​ ​Performance is close to native apps​
​●​ ​Suitable for most real-world applications​

​Created By :​​Anand Gaur​
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​4. Cost-effective solution​

​●​ ​One team can handle both platforms​
​●​ ​Less development time means lower cost​
​●​ ​Good choice for startups and businesses​

​5. Reusable and maintainable code​

​●​ ​Uses component-based architecture​
​●​ ​UI components can be reused​
​●​ ​Code is easier to manage and maintain​

​6. Strong community and ecosystem​

​●​ ​Large developer community​
​●​ ​Many third-party libraries available​
​●​ ​Easy to get support and solutions​

​7. Easy integration with native code​

​●​ ​Native code can be added when required​
​●​ ​Android → Kotlin / Java​
​●​ ​iOS → Swift / Objective-C​
​●​ ​Gives flexibility for platform-specific features​

​Q3: What is the difference between Native development and​
​React Native?​

​Feature​ ​Native Development​ ​React Native​

​Platform​ ​Android and iOS developed​
​separately​

​Android and iOS from a single​
​codebase​

​Programming​
​Language​

​Kotlin/Java (Android),​
​Swift/Objective-C (iOS)​

​JavaScript / TypeScript​

​Codebase​ ​Separate codebase for each​
​platform​

​Single shared codebase​

​UI Components​ ​Direct use of platform-specific​
​native UI​

​Uses real native UI​
​components via React​

​Performance​ ​Best possible native performance​ ​Near-native performance​

​Development Speed​ ​Slower due to separate​
​development​

​Faster due to code sharing​

​Created By :​​Anand Gaur​
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​3. JavaScript & TypeScript for React Native​
​Q:1 What are the different ways to declare variables in​
​JavaScript?​
​In JavaScript, variables can be declared in​​three​​main ways​​:​

​1.​ ​var​
​2.​ ​let​
​3.​ ​const​

​1. var​

​●​ ​Introduced in​​older versions of JavaScript​
​●​ ​Has​​function scope​
​●​ ​Can be​​re-declared and re-assigned​
​●​ ​Gets​​hoisted​​(initialized as​​undefined​​)​
​●​ ​Not recommended in modern JavaScript​

​2. let​

​●​ ​Introduced in​​ES6​
​●​ ​Has​​block scope​
​●​ ​Can be​​re-assigned​
​●​ ​Cannot be​​re-declared in the same scope​
​●​ ​Safer than​​var​

​3. const​

​●​ ​Introduced in​​ES6​
​●​ ​Has​​block scope​
​●​ ​Used for values that should not change​
​●​ ​Cannot be​​re-assigned​
​●​ ​Must be​​initialized at declaration​

​Q:2 What is hoisting in JavaScript?​
​●​ ​Hoisting​​is a JavaScript behavior where​​variable declarations​​are moved to the top​

​of their scope​​during the compilation phase.​

​●​ ​Only​​declarations are hoisted​​, not initializations.​

​How hoisting works​

​●​ ​JavaScript scans the code before execution​
​●​ ​Variable and function​​declarations are registered​​first​
​●​ ​Actual value assignment happens​​at runtime​

​Created By :​​Anand Gaur​
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​Hoisting with​​var​

​●​ ​var​​declarations are hoisted and initialized with​​undefined​

​Hoisting with​​let​​and​​const​

​●​ ​let​​and​​const​​are​​hoisted but not initialized​
​●​ ​They stay in the​​Temporal Dead Zone (TDZ)​
​●​ ​Accessing them before declaration causes an error​

​Hoisting with​​const​

​●​ ​Same as​​let​
​●​ ​Additionally,​​const​​must be initialized at declaration​

​Real-World Analogy​

​●​ ​Hoisting is like​​reserving seats before the event​
​●​ ​The name is registered, but the person arrives later​

​Q3: What is block scope in JavaScript?​

​●​ ​Block scope​​means a variable is​​accessible only inside​​the block​​{ }​​where it is​
​declared.​

​●​ ​Variables declared using​​let​​and​​const​​have block​​scope.​

​●​ ​A block can be:​
​○​ ​if​​block​
​○​ ​for​​/​​while​​loop​
​○​ ​{ }​​block​

​Key Points​

​●​ ​let​​and​​const​​→​​block-scoped​
​●​ ​var​​→​​not block-scoped​​(function-scoped)​
​●​ ​Block scope helps prevent​​unintended variable access​​and bugs​

​Code Example:​

​Using​​let​​(Block Scoped)​

​if​​(​​true​​) {​

​let​​x =​​10​​;​

​}​

​console​​.log(x);​​// ❌  Error: x is not defined​

​Created By :​​Anand Gaur​
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​Using​​var​​(Not Block Scoped)​

​if​​(​​true​​) {​

​var​​y =​​20​​;​

​}​

​console​​.log(y);​​// ✅  20​

​Why block scope is important​

​●​ ​Prevents variable conflicts​
​●​ ​Makes code safer and predictable​
​●​ ​Improves readability and maintainability​

​Q:4 What is function scope in JavaScript?​
​●​ ​Function scope​​means a variable is​​accessible only​​inside the function​​where it is​

​declared.​

​●​ ​Variables declared using​​var​​have function scope.​

​●​ ​let​​and​​const​​do​​not​​have function scope; they have​​block scope.​

​Key Points​

​●​ ​var​​→ function-scoped​
​●​ ​Variables declared inside a function​​cannot be accessed​​outside​
​●​ ​Helps in​​encapsulation of logic​

​Code Example:​

​function​​test() {​

​var​​x =​​10​​;​

​console​​.log(x);​​// ✅  10​

​}​

​console​​.log(x);​​// ❌  Error: x is not defined​

​Why function scope matters​

​●​ ​Prevents variables from leaking outside functions​
​●​ ​Useful in older JavaScript code​
​●​ ​Can cause bugs when misused with loops​

​Q:5 What is global scope in JavaScript?​
​●​ ​Global scope​​means a variable is​​accessible from anywhere in the program​​.​

​Created By :​​Anand Gaur​
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​4. React Fundamentals​
​Q1: What is the Virtual DOM in React?​

​●​ ​The​​Virtual DOM​​is a​​lightweight copy of the real​​DOM​​.​

​●​ ​It is a​​JavaScript object representation​​of the UI.​

​●​ ​React uses the Virtual DOM to​​optimize UI updates​​and improve performance.​

​Why Virtual DOM is needed​

​●​ ​Updating the​​real DOM is slow​
​●​ ​Frequent DOM updates reduce performance​
​●​ ​Virtual DOM minimizes​​direct DOM manipulation​

​How Virtual DOM works​

​1.​ ​React creates a​​Virtual DOM tree​​when the app loads​
​2.​ ​When state or props change:​

​○​ ​A​​new Virtual DOM​​is created​
​3.​ ​React compares:​

​○​ ​Old Virtual DOM vs New Virtual DOM​
​(this process is called​​diffing​​)​

​4.​ ​React finds the​​minimum changes​
​5.​ ​Only those changes are applied to the​​real DOM​

​(called​​reconciliation​​)​

​Key Points​

​●​ ​Virtual DOM is​​faster than direct DOM updates​
​●​ ​React updates only​​changed components​
​●​ ​Improves UI performance​
​●​ ​Works behind the scenes (developer doesn’t manage it)​

​Q:2 What is the difference between Virtual DOM and Real DOM?​

​●​ ​Real DOM​​is the actual browser DOM.​

​●​ ​Virtual DOM​​is a lightweight JavaScript representation​​of the DOM.​

​●​ ​React uses the Virtual DOM to​​optimize UI updates​​.​

​Created By :​​Anand Gaur​
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​Key Differences​

​Feature​ ​Real DOM​ ​Virtual DOM​

​Nature​ ​Actual browser DOM​ ​Lightweight JS object​

​Speed​ ​Slow updates​ ​Fast updates​

​Memory​ ​More memory usage​ ​Less memory usage​

​DOM​
​manipulation​

​Direct and expensive​ ​Batched and optimized​

​Re-rendering​ ​Updates entire subtree​ ​Updates only changed nodes​

​UI performance​ ​Lower for frequent updates​ ​Higher​

​Used by​ ​Vanilla JS​ ​React​

​How updates work​

​●​ ​Real DOM​
​○​ ​Updates happen​​immediately​
​○​ ​Each change triggers reflow and repaint​

​●​ ​Virtual DOM​
​○​ ​Changes happen in memory first​
​○​ ​React calculates minimal changes​
​○​ ​Only necessary updates reach the real DOM​

​Q:3 What is reconciliation in React?​

​●​ ​Reconciliation​​is the process React uses to​​update​​the UI efficiently​​.​

​●​ ​When state or props change, React​​compares the old​​Virtual DOM with the new​
​Virtual DOM​​.​

​●​ ​React then updates​​only the changed parts​​of the Real​​DOM.​

​Why reconciliation is needed​

​●​ ​Updating the Real DOM is​​slow​
​●​ ​Reconciliation finds the​​minimum number of changes​
​●​ ​Improves app performance and responsiveness​
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​How reconciliation works​

​1.​ ​State or props change​
​2.​ ​React creates a​​new Virtual DOM tree​
​3.​ ​React compares:​

​○​ ​Old Virtual DOM​
​○​ ​New Virtual DOM​

​(this is called​​diffing​​)​
​4.​ ​React identifies​​what changed​
​5.​ ​Only those changes are applied to the​​Real DOM​

​Key Points​

​●​ ​Reconciliation is based on the​​Virtual DOM​
​●​ ​Uses a​​diffing algorithm​
​●​ ​Updates are​​batched and optimized​
​●​ ​Happens automatically​

​Important Rules React Uses​

​●​ ​Elements of​​different types​​→ whole subtree is replaced​
​●​ ​Elements of​​same type​​→ only changed attributes are​​updated​
​●​ ​Keys​​help React identify list items efficiently​

​Q:4 What is the Fiber architecture in React?​

​●​ ​Fiber​​is the​​new reconciliation engine​​introduced​​in​​React 16​​.​

​●​ ​It allows React to​​split rendering work into small​​units​​.​

​●​ ​This makes React​​faster, smoother, and more responsive​​.​

​Why Fiber was introduced​

​●​ ​Old React used a​​stack-based reconciliation​​(blocking)​
​●​ ​Large UI updates could​​freeze the UI​
​●​ ​Fiber enables:​

​○​ ​Incremental rendering​
​○​ ​Better scheduling​
​○​ ​Priority-based updates​

​What Fiber actually is​

​●​ ​Fiber is a​​data structure​
​●​ ​Each Fiber represents:​

​○​ ​A component​
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​5. UI Development in React Native​
​Q:1 What is the React Native rendering pipeline?​

​●​ ​The​​React Native rendering pipeline​​is the process​​by which​​JavaScript code is​
​converted into native UI​​on Android and iOS.​

​●​ ​It defines​​how a React Native component finally appears​​on the screen​​.​

​Step-by-Step Rendering Pipeline​

​1. JavaScript Execution​

​●​ ​React Native code runs on the​​JavaScript thread​​.​
​●​ ​Components are written using:​

​○​ ​React​
​○​ ​JSX​

​●​ ​React creates a​​Virtual Tree​​of components.​

​👉  This step decides​​what UI should look like​​.​

​2. Shadow Tree Creation (Layout Phase)​

​●​ ​React Native creates a​​Shadow Tree​​.​
​●​ ​Shadow Tree:​

​○​ ​Is not visible on screen​
​○​ ​Used only for​​layout calculations​

​●​ ​Layout is calculated using​​Yoga (Flexbox engine)​​.​

​👉  This step decides​​size and position​​of UI elements.​

​3. Communication to Native (Old: Bridge / New: JSI)​

​●​ ​Layout and UI instructions are sent to native side:​
​○​ ​Old architecture →​​Bridge​
​○​ ​New architecture →​​JSI (direct communication)​

​👉  Data moves from JS to native efficiently.​

​4. Native UI Creation​

​●​ ​Native UI components are created:​
​○​ ​Android →​​View​​,​​TextView​
​○​ ​iOS →​​UIView​​,​​UILabel​

​●​ ​These are​​real native components​​, not WebView or HTML.​
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​5. Rendering on Screen​

​●​ ​Native UI thread draws components on screen.​
​●​ ​User can interact with the UI (touch, scroll, gestures).​

​Q:2 What is the Bridge in React Native rendering?​

​●​ ​The​​Bridge​​is the communication layer that allows​​JavaScript code to talk to native​
​code​​in React Native.​

​●​ ​It connects the​​JavaScript thread​​with​​native modules​​and UI components​​.​

​Why the Bridge was needed​

​●​ ​JavaScript and native code run in​​different threads​
​●​ ​They cannot directly talk to each other​
​●​ ​Bridge acts as a​​messenger​​between them​

​How the Bridge works​

​1.​ ​JavaScript creates UI updates or calls native APIs​
​2.​ ​Data is​​serialized into JSON​
​3.​ ​JSON messages are sent over the​​Bridge​
​4.​ ​Native side:​

​○​ ​Deserializes the message​
​○​ ​Executes native code​

​5.​ ​Results are sent back to JavaScript​

​Key Characteristics​

​●​ ​Asynchronous​​communication​
​●​ ​Uses​​JSON serialization​
​●​ ​One-way per message​
​●​ ​Shared by UI updates and native module calls​

​Limitations of the Bridge​

​●​ ​Serialization overhead​
​●​ ​Performance bottlenecks for heavy operations​
​●​ ​No direct synchronous calls​
​●​ ​Can cause UI lag for complex apps​

​Q:3 What is the View component in React Native?​

​●​ ​View​​is the​​most basic and fundamental UI component​​in React Native.​
​●​ ​It is used to​​build layouts and containers​​.​
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​6. State Management​
​Q:1 What is the Local State in React Native?​

​●​ ​Local state is​​data that belongs to a single component​

​●​ ​It controls the​​UI behavior and data​​of that component​​only​

​●​ ​It is​​not shared​​across the entire app by default​

​Why Local State is Needed​

​●​ ​To handle​​UI changes​​like:​
​○​ ​Input text​
​○​ ​Button clicks​
​○​ ​Toggle states​
​○​ ​Loading indicators​

​●​ ​Without state, UI would be​​static​
​●​ ​Makes the app​​interactive and dynamic​

​How Local State Works​

​●​ ​When state changes:​
​○​ ​React​​re-renders​​the component​
​○​ ​UI updates automatically​

​●​ ​State is managed using:​
​○​ ​useState​​hook (most common)​
​○​ ​this.state​​in class components (older way)​

​Common Use Cases of Local State​

​●​ ​Form input values​
​●​ ​Show / hide password​
​●​ ​Loading spinner​
​●​ ​Modal open / close​
​●​ ​Checkbox or switch value​

​Common Mistakes​

​●​ ​Updating state directly​
​count = count + 1​

​●​ ​Forgetting that state updates are async​
​●​ ​Using too much local state instead of lifting it up​
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​Q:2 What is Redux?​

​●​ ​Redux is a​​state management library​

​●​ ​It is used to manage​​global application state​

​●​ ​Multiple components can​​read and update the same data​​from one place​

​Why Redux is Needed​

​●​ ​Passing props deeply becomes messy (​​prop drilling​​)​
​●​ ​Many screens need the​​same data​​(user info, cart,​​auth)​
​●​ ​State logic becomes hard to track in large apps​
​●​ ​Redux gives​​predictable and centralized state​

​Core Idea of Redux​

​●​ ​App has​​one global store​
​●​ ​State is​​read-only​
​●​ ​Changes happen in a​​controlled way​

​Three Core Principles​

​1.​ ​Single Source of Truth​
​○​ ​Whole app state lives in​​one store​

​2.​ ​State is Read-Only​
​○​ ​You cannot change state directly​
​○​ ​You must send an​​action​

​3.​ ​Changes via Pure Functions​
​○​ ​State changes happen through​​reducers​
​○​ ​Reducers return a new state​

​Key Redux Components​
​1. Store​

​●​ ​Holds the entire app state​

​2. Action​

​●​ ​Plain JavaScript object​
​●​ ​Describes​​what happened​
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​3. Reducer​

​●​ ​Function that decides​​how state changes​

​4. Dispatch​

​●​ ​Sends action to the store​

​How Redux Works (Flow)​

​1.​ ​UI triggers an action​
​2.​ ​Action is dispatched​
​3.​ ​Reducer receives action​
​4.​ ​Reducer returns new state​
​5.​ ​Store updates state​
​6.​ ​UI re-renders​

​When to Use Redux​

​●​ ​Large applications​
​●​ ​Shared data across many screens​
​●​ ​Complex state logic​
​●​ ​Authentication, cart, user profile​

​When NOT to Use Redux​

​●​ ​Small apps​
​●​ ​Simple UI state​
​●​ ​One or two screens only​
​●​ ​Local state is enough​

​Q:3 How do you create a Redux store?​

​●​ ​Store is the​​central place​​that holds the entire app​​state​

​●​ ​Only​​one store​​exists in a Redux application​

​●​ ​It connects​​actions, reducers, and UI​

​Basic Way to Create a Redux Store​

​1. Create a Reducer​

​const​​counterReducer = (state = 0, action) => {​

​switch​​(action.type) {​

​case​​"INCREMENT"​​:​
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​7. Data Persistence & Storage​

​Q: 1 What is AsyncStorage in React Native?​

​AsyncStorage is a​​simple, unencrypted, asynchronous​​key–value storage system​​in React​
​Native.​

​It is used to​​store small amounts of data locally​​on the device​​and retrieve it later, even after​
​the app is closed or restarted.​

​Why AsyncStorage is Needed​

​Mobile apps often need to store data that should:​

​●​ ​Persist after app restart​
​●​ ​Be available offline​
​●​ ​Be quickly accessible​

​AsyncStorage helps store such data​​without a database​​setup​​.​

​Common Use Cases​

​AsyncStorage is typically used for:​

​●​ ​Login tokens (JWT, auth token)​
​●​ ​User preferences (theme, language)​
​●​ ​App settings​
​●​ ​Onboarding status (first launch or not)​
​●​ ​Cached small API responses​

​⚠️  Not meant for large or sensitive data.​

​How AsyncStorage Works​

​●​ ​Data is stored as​​key–value pairs​
​●​ ​Both key and value are​​strings​
​●​ ​Operations are​​asynchronous​
​●​ ​Returns​​Promises​

​Internally:​

​●​ ​Android → uses SharedPreferences / SQLite​
​●​ ​iOS → uses native storage mechanisms​
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​Limitations of AsyncStorage​

​●​ ​Not encrypted​
​●​ ​Not suitable for large data​
​●​ ​Slower than in-memory state​
​●​ ​No complex querying​

​👉  For secure data, use​​Secure Storage / Keychain​

​Q:2 Can you use async/await with AsyncStorage?​

​Yes. AsyncStorage methods return​​Promises​​, so they​​are designed to be used with​
​async/await​​.​

​Why async/await Works with AsyncStorage​

​●​ ​All AsyncStorage APIs are​​asynchronous​

​●​ ​Methods like:​
​○​ ​setItem​
​○​ ​getItem​
​○​ ​removeItem​
​○​ ​clear​

​●​ ​Return a​​Promise​
​●​ ​async/await​​makes the code:​

​○​ ​Easier to read​
​○​ ​Easier to debug​
​○​ ​Less nested than​​.then()​

​Q:3 What is SQLite?​

​SQLite is a​​lightweight, embedded relational database​​used to store structured data​​locally​
​on the device​​.​

​It works​​inside the app​​, does not require a server,​​and stores data in a​​single database file​​.​

​Why SQLite is Used​

​Mobile apps often need to store:​

​●​ ​Large amounts of data​
​●​ ​Structured data with relationships​
​●​ ​Data that must be queried, filtered, sorted​

​AsyncStorage is not enough for this. SQLite solves that problem.​
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​8. Networking in React Native​

​Q:1 What is the Fetch API in React Native?​

​The Fetch API in React Native is a​​built-in JavaScript​​API​​used to make​​network requests​
​such as calling REST APIs, fetching data from a server, or sending data to a backend.​

​React Native uses the​​same Fetch API standard as the​​browser​​, so the syntax and behavior​
​are very similar.​

​Key Characteristics of Fetch API​

​1. Built-In​

​●​ ​Fetch is​​available by default​​in React Native​
​●​ ​No installation required​
​●​ ​Works out of the box​

​2. Promise-Based​

​●​ ​Fetch returns a​​Promise​
​●​ ​Works naturally with:​

​○​ ​.then()​
​○​ ​async / await​

​fetch(url).then(response => response.json());​

​3. Asynchronous​

​●​ ​Network calls do​​not block the UI​
​●​ ​Runs in the background​
​●​ ​UI stays responsive​

​4. Platform Independent​

​●​ ​Same code works on:​
​○​ ​Android​
​○​ ​iOS​

​●​ ​React Native handles native networking internally​

​Q:2 What is Axios?​

​Axios is a​​popular third-party JavaScript HTTP client​​library​​used to make​​network​
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​requests​​from applications, including​​React Native​​apps.​

​It is built on top of​​Promises​​and provides a​​cleaner,​​more powerful API​​compared to the​
​native Fetch API.​

​Why Axios Is Used Instead of Fetch​

​While Fetch is built-in, Axios is often preferred because it:​

​●​ ​Reduces boilerplate​

​●​ ​Handles common use cases automatically​

​●​ ​Makes API handling more maintainable in large apps​

​Key Features of Axios​

​1. Promise-Based​

​●​ ​Supports​​async / await​
​●​ ​Cleaner error handling​

​2. Automatic JSON Transformation​

​●​ ​Automatically converts:​
​○​ ​Request body → JSON​
​○​ ​Response → JavaScript object​

​👉  No need to call​​response.json()​​manually.​

​3. HTTP Error Handling​

​●​ ​Automatically rejects the Promise for:​
​○​ ​4xx errors​
​○​ ​5xx errors​

​4. Interceptors​

​Interceptors allow you to:​

​●​ ​Modify requests before they are sent​
​●​ ​Handle responses globally​
​●​ ​Attach auth tokens​
​●​ ​Handle refresh tokens​
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​9. Asynchronous Programming & Concurrency​

​Q:1 What is the JavaScript Event Loop?​

​The JavaScript Event Loop is the​​mechanism that allows​​JavaScript to handle​
​asynchronous operations​​(like API calls, timers, promises)​​without blocking the main​
​thread​​, even though JavaScript itself is​​single-threaded​​.​

​Why the Event Loop Is Needed​

​JavaScript is Single-Threaded​

​●​ ​JavaScript has​​one call stack​
​●​ ​It can execute​​only one thing at a time​

​If JavaScript waited for:​

​●​ ​Network requests​
​●​ ​Timers​
​●​ ​File reads​

​👉  The UI would freeze completely.​

​So the Event Loop exists to​​keep the app responsive​​.​

​Core Components of the Event Loop​

​To understand the Event Loop, you must understand​​these parts together​​:​

​1. Call Stack​

​●​ ​Where JavaScript executes code​
​●​ ​Functions are pushed and popped from here​
​●​ ​Runs​​synchronous code​

​2. Web APIs (Browser / RN Environment)​

​Provided by the environment, not JS itself.​

​Examples:​

​●​ ​setTimeout​
​●​ ​fetch​
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​●​ ​DOM events​
​●​ ​WebSockets​

​These APIs:​

​●​ ​Handle async tasks​
​●​ ​Work in the background​

​3. Callback Queue (Task Queue / Macro-task Queue)​

​●​ ​Stores callbacks like:​
​○​ ​setTimeout​
​○​ ​setInterval​
​○​ ​UI events​

​Callbacks wait here​​until the call stack is empty​​.​

​4. Microtask Queue​

​●​ ​Higher priority than callback queue​
​●​ ​Used by:​

​○​ ​Promises (​​then​​,​​catch​​)​
​○​ ​queueMicrotask​
​○​ ​MutationObserver​

​👉 ​​Microtasks run before callbacks​

​5. Event Loop (The Orchestrator)​

​The Event Loop:​

​1.​ ​Checks if the call stack is empty​
​2.​ ​Executes all microtasks​
​3.​ ​Executes one task from callback queue​
​4.​ ​Repeats forever​

​Q:2 What is the difference between macrotasks and microtasks​
​in JavaScript?​

​👉  JavaScript always executes​​microtasks before macrotasks​​once the call stack becomes​
​empty.​

​Macrotasks:​

​Macrotasks (also called the​​task queue​​) are​​larger, scheduled tasks​​that are executed​​one at​
​a time​​by the Event Loop.​
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​10. Architecture & Design Patterns​

​Q:1 What is MVVM architecture in React Native?​

​MVVM​​stands for​​Model – View – ViewModel​​.​
​It is an architectural pattern that separates​​UI​​,​​business logic​​, and​​data handling​​to make the​
​app easier to build, test, and maintain.​

​Why is MVVM Used in React Native?​

​MVVM helps solve common problems in large React Native apps.​

​Problems without MVVM​

​●​ ​UI and logic mixed together​
​●​ ​Components become huge and hard to read​
​●​ ​Difficult testing​
​●​ ​Hard to reuse logic​
​●​ ​Bugs increase as app grows​

​MVVM solves this by​

​●​ ​Separating UI from business logic​
​●​ ​Making code modular and reusable​
​●​ ​Improving testability​
​●​ ​Making the app scalable​

​MVVM Components:​

​1. View – The UI Layer (What the user sees)​

​●​ ​The​​View​​is the visible part of the application.​
​●​ ​Responsible only for displaying data​
​●​ ​Handles user interaction (button clicks, input) and It is responsible for​​displaying data​​.​

​In React Native, the View is usually:​

​●​ ​A functional component​
​●​ ​Written in JSX​
​●​ ​Focused on layout, styles, and rendering state​

​What the View SHOULD do​

​●​ ​Render UI based on data it receives​
​●​ ​Trigger actions when the user interacts (button click, text input)​
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​●​ ​Show loading, error, or success states​

​What the View SHOULD NOT do​

​●​ ​Make API calls directly​
​●​ ​Contain complex business rules​
​●​ ​Transform or validate data​
​●​ ​Handle side effects​

​2. ViewModel – The Brain of the Screen​

​The​​ViewModel​​is the most important part of MVVM.​

​●​ ​Acts as a bridge between View and Model​
​●​ ​Holds state and business logic​
​●​ ​Prepares data for UI​

​The ViewModel contains​​state​​,​​business logic​​, and​​decision-making code​​.​

​In React Native, a ViewModel is commonly implemented as:​

​●​ ​A custom hook​
​●​ ​A state container (Redux, Zustand, MobX)​
​●​ ​A combination of hooks and services​

​Responsibilities of ViewModel​

​●​ ​Fetch data from the Model​
​●​ ​Hold UI state (loading, error, data)​
​●​ ​Decide what data the View should see​
​●​ ​Expose functions that the View can call​

​Key idea​

​The ViewModel​​does not know anything about UI layout​​.​
​It only knows​​what data exists​​and​​what actions are​​possible​​.​

​Why this matters​

​Because logic is outside the UI:​

​●​ ​You can test it without rendering screens​
​●​ ​You can reuse it across multiple screens​
​●​ ​You can refactor UI without breaking logic​

​This is what makes MVVM feel​​professional and scalable​​.​
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​3. Model – The Data and Business Rules Layer​

​The​​Model​​is responsible for everything related to​​data.​

​It does not care about:​

​●​ ​Screens​
​●​ ​Buttons​
​●​ ​User interactions​

​It only focuses on:​

​●​ ​Fetching data​
​●​ ​Database logic​
​●​ ​Updating data​
​●​ ​Applying business rules​

​In React Native, Model usually includes​

​●​ ​API services (Fetch / Axios)​
​●​ ​Database logic (SQLite, Realm)​
​●​ ​Data mappers​
​●​ ​Repository functions​

​Important concept​

​The Model​​never talks directly to the View​​.​
​It only communicates with the ViewModel.​

​How All Three Work Together​

​Let’s understand this with a real scenario.​

​1.​ ​User opens a screen​
​2.​ ​View requests data by calling a function from ViewModel​
​3.​ ​ViewModel asks the Model to fetch data​
​4.​ ​Model fetches data from API or database​
​5.​ ​Model returns data to ViewModel​
​6.​ ​ViewModel updates its state​
​7.​ ​View automatically re-renders with new data​

​At no point does:​

​●​ ​The View call the API directly​
​●​ ​The Model update UI​
​●​ ​The ViewModel control layout​
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​Each layer does​​only its own job​​.​

​Why This Separation Is Critical in Real Projects​

​In small apps, mixing everything inside one component may work.​
​In​​real production apps​​, this causes serious problems:​

​●​ ​Components become very large​
​●​ ​Logic duplication increases​
​●​ ​Bugs are hard to track​
​●​ ​New developers struggle to understand the code​
​●​ ​Testing becomes painful​

​MVVM prevents this by enforcing​​discipline in code​​structure​​.​

​Q2. What is the Difference Between MVC, MVP, and MVVM?​

​Aspect​ ​MVC​ ​MVP​ ​MVVM​

​Full Form​ ​Model – View –​
​Controller​

​Model – View –​
​Presenter​

​Model – View –​
​ViewModel​

​Main Goal​ ​Separate UI, data, and​
​input handling​

​Improve separation​
​and testability​

​Clean separation with​
​reactive UI​

​Role of View​ ​Displays UI and sends​
​user actions​

​Passive UI, no logic​ ​Displays UI and​
​observes state​

​Role of Middle Layer​ ​Controller handles​
​user actions and​
​updates Model​

​Presenter handles all​
​logic and updates​

​View​

​ViewModel manages​
​state and business​

​logic​

​Communication Style​ ​View ↔ Controller ↔​
​Model​

​View → Presenter →​
​Model​

​View ⇄ ViewModel →​
​Model​

​View to Model​
​Interaction​

​Often indirect but​
​tightly coupled​

​No direct interaction​ ​No direct interaction​

​Does middle layer​
​update View directly?​

​Yes​ ​Yes​ ​No​

​How UI updates​ ​Controller decides​
​what View shows​

​Presenter explicitly​
​updates View​

​View auto-updates​
​when state changes​

​Coupling Level​ ​High​ ​Medium​ ​Low​
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​11. Package & Dependency Management​

​Q:1 What is package.json?​

​●​ ​package.json​​is the main configuration file used in Node.js and React Native projects.​

​●​ ​It stores important information about the project such as metadata, dependencies,​
​scripts, and configuration.​

​●​ ​It acts as the “brain” of the project, helping tools and package managers understand how​
​the project is structured and what it needs to run.​

​Why package.json Is Important​

​●​ ​Defines project name, version, and details​
​●​ ​Lists all libraries (dependencies) the project uses​
​●​ ​Helps install and manage packages using npm or yarn​
​●​ ​Stores scripts that automate tasks​
​●​ ​Ensures project setup consistency across systems​
​●​ ​Supports version control and collaboration​

​Role of package.json in React Native​

​●​ ​Manages React Native version​
​●​ ​Handles third-party libraries​
​●​ ​Tracks dependency versions​
​●​ ​Supports project scripts​
​●​ ​Ensures consistent environment setup​

​Q:2 What is the dependencies field?​

​●​ ​The​​dependencies​​field in​​package.json​​is a section where all the packages​
​required for the application to run in production are listed.​

​●​ ​These libraries are installed automatically when someone runs​​npm install​​or​​yarn​
​install​​.​

​●​ ​They are essential for the actual working of the app.​

​Why the dependencies Field Is Important​

​●​ ​It clearly defines which external libraries the app depends on​
​●​ ​Ensures consistent setup across all developers and environments​
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​●​ ​Helps npm or yarn install the correct packages​
​●​ ​Keeps the project organized and maintainable​

​Example:​

​"dependencies"​​: {​

​"react"​​:​​"18.2.0"​​,​

​"react-native"​​:​​"0.73.0"​​,​

​"axios"​​:​​"^1.6.0"​

​}​

​Key Points About dependencies​

​●​ ​Contains only packages needed at runtime​
​●​ ​These packages are bundled into the final build​
​●​ ​Version numbers define which release to install​
​●​ ​Updating dependencies may update app behavior​
​●​ ​Used in both React and React Native projects​

​Q:3 What are the main differences between npm, Yarn, and​
​pnpm?​

​●​ ​npm, Yarn, and pnpm are JavaScript package managers.​
​●​ ​They are used to install, update, and manage dependencies in Node.js and React Native​

​projects.​
​●​ ​All three do the same job but differ in speed, storage, and features.​

​npm (Node Package Manager)​

​●​ ​Default package manager that comes with Node.js​
​●​ ​Uses a​​node_modules​​folder to store packages​
​●​ ​Installs full copies of each dependency into every project​
​●​ ​Simple and widely supported​
​●​ ​Works well but may be slower with large projects​

​Strengths​

​●​ ​Pre-installed with Node.js​
​●​ ​Huge ecosystem​
​●​ ​Official standard tool​

​Yarn​

​●​ ​Created by Meta (Facebook) as an improvement over npm​
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​12. Performance Optimization & Memory​
​Management​

​Q:1 What is the Hermes engine?​

​●​ ​Hermes is a​​lightweight JavaScript engine​​developed by Meta specifically for React​
​Native.​

​●​ ​It is optimized to make React Native apps​​faster,​​smaller, and more memory-efficient​​,​
​especially on mobile devices.​

​●​ ​Hermes replaces the default JavaScript engine (like JavaScriptCore) to improve​
​performance.​

​Why Hermes Was Created​

​●​ ​Mobile devices have limited CPU, RAM, and storage​
​●​ ​Traditional JS engines were optimized for browsers, not apps​
​●​ ​React Native needed a​​mobile-first engine​​focused on startup speed and performance​

​Key Features of Hermes​

​1. Ahead-Of-Time (AOT) Compilation​

​●​ ​JavaScript is compiled into bytecode at build time​
​●​ ​Reduces work needed at runtime​
​●​ ​Improves startup speed significantly​

​2. Smaller App Size​

​●​ ​Bytecode bundles are smaller than JS bundles​
​●​ ​Reduces APK/IPA size​
​●​ ​Saves storage space on devices​

​3. Faster Startup Time​

​●​ ​App loads quicker because parsing time is reduced​
​●​ ​Makes UI appear faster for users​

​4. Lower Memory Usage​

​●​ ​Hermes is designed to use less RAM​
​●​ ​Important for low-end Android devices​
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​5. Better Debugging Support​

​●​ ​Works with React DevTools​
​●​ ​Includes its own debugger and profiling tools​

​How Hermes Works in React Native​

​●​ ​When enabled, React Native compiles JS into Hermes bytecode during build​
​●​ ​The engine loads bytecode instead of raw JS​
​●​ ​Less runtime parsing means better performance​

​When Hermes Is Most Useful​

​●​ ​Large apps​
​●​ ​Apps with many dependencies​
​●​ ​Apps targeting low-end devices​
​●​ ​Apps where startup time matters​

​Key Interview Points​

​●​ ​Hermes is a JavaScript engine built for React Native​
​●​ ​Improves startup speed and memory usage​
​●​ ​Uses ahead-of-time bytecode compilation​
​●​ ​Great for performance-critical apps​
​●​ ​Especially beneficial on Android devices​

​Q:2 What causes component re-renders in React?​

​A re-render happens when React decides that a component needs to update its UI.​

​This occurs whenever the data the component depends on​​changes​​.​

​Main Causes of Re-Renders​

​1. State Changes​

​●​ ​When​​useState​​value changes​
​●​ ​React re-renders that component​
​●​ ​And all of its child components (by default)​

​2. Props Changes​

​●​ ​If a parent passes new props to a child​
​●​ ​Even if the UI output doesn’t change​
​●​ ​The child component re-renders​
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​13. Testing in React Native​
​Q:1 What is unit testing in React Native?​

​●​ ​Unit testing is a testing method where you​​test individual pieces of code (called units)​
​in isolation.​

​●​ ​In React Native, a “unit” usually means a function, component, hook, reducer, or utility​
​module.​

​●​ ​The goal is to verify that each small part of the app behaves correctly on its own​

​What a Unit Test Checks​

​●​ ​Correct output for given inputs​
​●​ ​Component rendering behavior​
​●​ ​State and props logic​
​●​ ​Business logic correctness​
​●​ ​Edge-case handling​
​●​ ​Error handling paths​

​Why Unit Testing Is Important in React Native​

​●​ ​Catches bugs early during development​
​●​ ​Makes refactoring safer​
​●​ ​Improves code quality and reliability​
​●​ ​Prevents regressions when adding features​
​●​ ​Builds developer confidence​
​●​ ​Helps maintain large codebases​

​Example Areas Tested in React Native​

​●​ ​Pure functions (utilities, helpers)​
​●​ ​Reducers and selectors​
​●​ ​Hooks​
​●​ ​Components rendering states​
​●​ ​Validation logic​
​●​ ​Formatting functions​

​Tools Commonly Used​

​●​ ​Jest (most popular test runner)​
​●​ ​React Native Testing Library (for components)​
​●​ ​Enzyme (legacy in web/react)​

​Jest usually comes preconfigured in React Native projects.​
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​Q:2 What is Jest and why is Jest popular for React Native​
​testing?​

​●​ ​Jest is a​​JavaScript testing framework​​created and maintained by Meta.​

​●​ ​It is the​​default and most widely used testing tool​​for React and React Native​
​applications.​

​●​ ​Jest runs tests, checks expectations, mocks modules, and reports results in a simple​
​and efficient way.​

​Why Jest Is Popular for React Native Testing​

​1. Built-in Support for React Native​

​●​ ​React Native projects come preconfigured with Jest​
​●​ ​Minimal setup is required​
​●​ ​Works smoothly with React Native modules and components​

​2. Snapshot Testing Support​

​●​ ​Jest allows​​snapshot testing​​, which captures a rendered component’s output​
​●​ ​Makes it easy to detect unintended UI changes​
​●​ ​Very useful for React components​

​3. Powerful Mocking System​

​●​ ​Can mock functions, APIs, timers, and modules​
​●​ ​Helps test components in isolation​
​●​ ​Removes dependency on real network calls or devices​

​4. Fast and Parallel Test Execution​

​●​ ​Runs tests in parallel​
​●​ ​Uses smart caching​
​●​ ​Ensures quick feedback during development​

​5. Simple and Developer-Friendly Syntax​

​●​ ​Easy to learn and read​
​●​ ​Works well with TypeScript​
​●​ ​Clear error messages and reports​

​6. Code Coverage Support​

​●​ ​Built-in code coverage reports​
​●​ ​Helps measure how much code is tested​
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​14. Advanced React Native Topics​

​Q:1 What is a Native Module in React Native?​

​●​ ​A Native Module is a​​bridge between JavaScript and platform-specific native code​
​in React Native.​

​●​ ​It allows you to write logic in​​Java (Android), Kotlin​​(Android), Objective-C (iOS), or​
​Swift (iOS)​​and then call that logic from JavaScript.​

​●​ ​This is useful when React Native does not provide a built-in API for some device feature.​

​Why Native Modules Exist​

​●​ ​JavaScript cannot directly access device-level features​
​●​ ​Native platforms expose powerful APIs​
​●​ ​Native Modules allow React Native apps to use them​

​What Native Modules Are Commonly Used For​

​●​ ​Camera access​
​●​ ​Bluetooth​
​●​ ​Sensors (Gyroscope, Accelerometer)​
​●​ ​NFC​
​●​ ​Native UI components​
​●​ ​Push notifications​
​●​ ​File system and storage​
​●​ ​Media playback​

​How Native Modules Work​

​1.​ ​You write native code in Android or iOS​
​2.​ ​You expose native functions to React Native​
​3.​ ​JavaScript calls those functions like normal JS methods​
​4.​ ​The Bridge / JSI handles communication between JS and native code​

​When You Need Native Modules​

​●​ ​Platform-specific performance optimization​
​●​ ​Missing APIs in React Native​
​●​ ​Integration with third-party SDKs​
​●​ ​Hardware-level access​
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​Q:2 What is the difference between Native Modules and​
​JavaScript modules?​

​Native Modules and JavaScript modules both add functionality to a React Native app, but they​
​run in​​different environments​​and are used for​​different purposes​​.​

​What Are JavaScript Modules?​

​●​ ​Written in JavaScript​
​●​ ​Run on the JavaScript thread​
​●​ ​Used for app logic, UI, state management, utilities, etc.​
​●​ ​Fully cross-platform (same code runs on Android and iOS)​
​●​ ​Do not directly access device hardware or OS APIs​

​Example:​

​import​​mathUtil​​from​​'./mathUtil'​​;​

​What Are Native Modules?​

​●​ ​Written in platform languages​
​○​ ​Java / Kotlin → Android​
​○​ ​Objective-C / Swift → iOS​

​●​ ​Run in the native layer of the OS​
​●​ ​Exposed to JavaScript via the Bridge or JSI​
​●​ ​Used to access device-level APIs or high-performance logic​

​Example:​

​NativeModules.DeviceInfo.getModel();​

​Q:3 What is a Native UI Component?​

​●​ ​A Native UI Component is a​​custom user interface element created in native​
​platform code​​(Android or iOS) and then exposed for​​use inside a React Native app.​

​●​ ​It allows React Native developers to reuse or build UI elements that are not available in​
​React Native by default, while still using them like normal React components.​

​What Makes It “Native”?​

​●​ ​It is implemented using​
​○​ ​View / ViewGroup in Android​
​○​ ​UIView in iOS​
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​15. Application Security in React Native​
​Q:1 What is secure coding and Why is secure coding important​
​in React Native?​

​●​ ​Secure coding is the practice of​​writing code in a way that prevents security​
​vulnerabilities and protects user data from attacks or misuse​​.​

​●​ ​It means thinking about security while designing, developing, and testing your React​
​Native app, not just after it is finished.​

​●​ ​The goal is to ensure the app remains safe even if attackers try to exploit weaknesses.​

​What Secure Coding Involves​

​●​ ​Validating all user inputs​
​●​ ​Protecting sensitive data​
​●​ ​Avoiding hard-coded credentials​
​●​ ​Encrypting communication​
​●​ ​Handling errors safely​
​●​ ​Following security best practices​

​It is a continuous mindset, not a single step.​

​Why Secure Coding Is Critical in React Native​

​1. Protects User Data​

​●​ ​Mobile apps often handle​
​○​ ​personal information​
​○​ ​passwords​
​○​ ​financial data​

​●​ ​Secure coding ensures this data cannot be stolen or leaked​

​2. Prevents Hacking and Exploits​

​●​ ​Attackers target apps to​
​○​ ​steal data​
​○​ ​inject malicious code​
​○​ ​tamper with APIs​

​●​ ​Secure code reduces vulnerabilities​

​3. Prevents Financial and Business Loss​

​●​ ​Security breaches cause​
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​○​ ​revenue loss​
​○​ ​legal penalties​
​○​ ​brand damage​

​●​ ​Prevention is far cheaper than recovery​

​Common Security Risks in React Native​

​●​ ​Storing secrets in AsyncStorage​
​●​ ​Unencrypted API communication​
​●​ ​Weak authentication flows​
​●​ ​JavaScript bundle reverse-engineering​
​●​ ​Insecure 3rd-party SDK usage​
​●​ ​Poor input validation​
​●​ ​Leaky logs and debug data​

​Why React Native Needs Extra Attention​

​●​ ​JavaScript bundle can be decompiled​
​●​ ​Mobile devices can be rooted or jailbroken​
​●​ ​Data may persist locally​
​●​ ​Many layers exist​

​○​ ​JS​
​○​ ​Native​
​○​ ​API​
​○​ ​Database​

​Security must be applied across all layers.​

​Q:2 What is SSL/TLS?​

​●​ ​SSL (Secure Sockets Layer) and TLS (Transport Layer Security) are​​security protocols​
​that encrypt data sent between a client and a server over the internet​​.​

​●​ ​TLS is the modern and more secure version of SSL, but people often use the term​​SSL​
​to describe both.​

​●​ ​These protocols ensure that data cannot be read or modified while it is being​
​transmitted.​

​What SSL/TLS Protects​

​●​ ​Login credentials​
​●​ ​Personal information​
​●​ ​Payment details​
​●​ ​API communication​
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​16. React Native Ecosystem Knowledge​

​Q:1 What are the prerequisites for Google Play Store​
​submission?​

​●​ ​Before you can publish a React Native (or any Android) app on the Google Play Store,​
​there are a number of​​technical, legal, and policy​​requirements​​you must complete.​

​●​ ​These steps ensure your app is secure, high-quality, compliant, and ready for real users.​

​Developer Account Requirement​

​●​ ​You must create a​​Google Play Console Developer Account​
​●​ ​Requires a one-time registration fee​
​●​ ​Identity verification may be required​
​●​ ​Organization accounts are available for companies​

​Developer Account Requirement​

​●​ ​You must create a​​Google Play Console Developer Account​
​●​ ​Requires a one-time registration fee​
​●​ ​Identity verification may be required​
​●​ ​Organization accounts are available for companies​

​Package and Versioning Rules​

​●​ ​Unique applicationId (package name)​
​●​ ​Version code must be an integer and always increase​
​●​ ​Version name should match your release plan​

​Target and Compile SDK Requirements​

​●​ ​App must target​​minimum API level required by Google​
​●​ ​Must use recent Android SDK versions​
​●​ ​Apps should follow modern privacy and permission rules​

​Policy and Compliance Requirements​

​●​ ​Must comply with Google Play policies​
​●​ ​Content policy​
​●​ ​Security policy​
​●​ ​User data and privacy policy​
​●​ ​Ads policy (if using ads)​
​●​ ​Financial regulations (if processing payments)​
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​Failure to comply may lead to rejection.​

​Privacy Policy Requirement​

​●​ ​Mandatory if your app​
​○​ ​collects personal data​
​○​ ​uses login​
​○​ ​uses analytics​
​○​ ​uses permissions like camera, location, storage​

​●​ ​The policy must be hosted online (URL required)​

​Data Safety Section​

​●​ ​You must declare​
​○​ ​what data your app collects​
​○​ ​how it is used​
​○​ ​whether it is shared​
​○​ ​whether it is encrypted​

​●​ ​This appears on your Play Store listing​

​Providing false information can lead to suspension.​

​App Content Classification​

​●​ ​Age rating questionnaire must be completed​
​●​ ​Content rating categories include​

​○​ ​Everyone​
​○​ ​Teen​
​○​ ​Mature​
​○​ ​Adult content policies must be respected​

​Store Listing Assets Required​

​●​ ​App name (title)​
​●​ ​Short description​
​●​ ​Full description​
​●​ ​App icon​
​●​ ​Feature graphic​
​●​ ​Screenshots​

​○​ ​Phone screenshots mandatory​
​○​ ​Tablet screenshots recommended​

​●​ ​Promo videos (optional)​

​Assets must follow quality guidelines.​
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​17. DevOps for React Native​

​Q:1 What is Mobile DevOps?​

​●​ ​Mobile DevOps is the practice of combining​​development, testing, deployment,​
​monitoring, and operations workflows specifically for mobile applications​​.​

​●​ ​It adapts DevOps principles to the unique challenges of Android and iOS development,​
​helping teams deliver mobile apps faster, more reliably, and with better quality.​

​Why Mobile DevOps Exists​

​●​ ​Mobile apps depend on app stores​
​●​ ​Release cycles require approvals​
​●​ ​Devices and OS versions vary widely​
​●​ ​Native builds are complex​
​●​ ​Continuous updates and testing are needed​

​Mobile DevOps solves these challenges with automation and collaboration.​

​Key Areas Covered in Mobile DevOps​

​●​ ​Source code management​
​●​ ​Continuous Integration (CI)​
​●​ ​Continuous Delivery (CD)​
​●​ ​Automated testing​
​●​ ​Build automation​
​●​ ​Release management​
​●​ ​Monitoring and analytics​
​●​ ​Crash reporting​
​●​ ​Feedback loops​

​Typical Mobile DevOps Pipeline​

​1.​ ​Developer writes code​
​2.​ ​Code pushed to repository​
​3.​ ​CI system builds the app​
​4.​ ​Automated tests run​
​5.​ ​Signed release build is generated​
​6.​ ​Build is deployed to testers or stores​
​7.​ ​Analytics and crash logs are monitored​
​8.​ ​Feedback informs the next release​

​This cycle repeats continuously.​
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​Why It Is Important for React Native Developers​

​●​ ​Cross-platform complexity​
​●​ ​Native dependencies​
​●​ ​Release signing​
​●​ ​OTA updates (CodePush etc.)​
​●​ ​Need for automated workflows​

​Mobile DevOps ensures consistency across platforms.​

​Q:2 What is the CI/CD pipeline in React Native?​

​●​ ​CI/CD stands for Continuous Integration and Continuous Delivery (or Deployment).​

​●​ ​In React Native, a CI/CD pipeline is an​​automated​​workflow that builds, tests, and​
​delivers your Android and iOS apps whenever code is updated​​.​

​●​ ​The goal is to release high-quality mobile apps faster, with fewer manual steps and​
​mistakes.​

​What Continuous Integration (CI) Means​

​●​ ​Developers push code to a shared repository​
​●​ ​An automated system​

​○​ ​pulls the latest code​
​○​ ​installs dependencies​
​○​ ​runs tests​
​○​ ​builds the app​

​●​ ​This ensures code works properly before merging​

​It keeps the project stable at all times.​

​What Continuous Delivery (CD) Means​

​●​ ​After CI succeeds​
​●​ ​The pipeline automatically​

​○​ ​creates signed builds (APK/AAB/IPA)​
​○​ ​distributes them to testers or stores​

​●​ ​This removes manual packaging work​

​Releases become predictable and repeatable.​
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​18. Scenario-Based Interview Questions​
​Q1: How do you optimize a slow React Native app?​
​Scenario​
​Your app feels laggy while navigating screens or scrolling. The interviewer wants to know how​
​you approach performance improvement step-by-step.​

​Answer​

​1. First, verify what is actually slow​

​I check whether the issue is:​

​●​ ​Slow navigation​
​●​ ​Slow list scrolling​
​●​ ​Delayed button clicks​
​●​ ​UI freezes during network calls​

​I use tools like Flipper or React DevTools to see:​

​●​ ​JS thread activity​
​●​ ​Re-render count​
​●​ ​Memory usage​

​So I am not guessing. I measure first.​

​2. Reduce unnecessary re-renders​

​Many times components update even when nothing important has changed.​

​I do things like:​

​●​ ​Use React.memo for list rows or UI-only components​
​●​ ​Use useCallback for functions passed as props​
​●​ ​Avoid keeping too much state at the top level​

​This keeps React from doing extra work.​

​3. Optimize lists​

​If the lag happens in lists, I:​

​●​ ​Use FlatList instead of ScrollView​
​●​ ​Provide keyExtractor with a stable id​
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​●​ ​Use pagination instead of loading everything at once​
​●​ ​Avoid doing calculations inside renderItem​

​FlatList virtualizes rows so memory stays low.​

​4. Move heavy work away from UI​

​If I notice the JS thread is blocked, I check for:​

​●​ ​Large loops​
​●​ ​JSON parsing​
​●​ ​Image processing​

​Where possible, I:​

​●​ ​Move work to background​
​●​ ​Do processing before rendering​
​●​ ​Cache repeated results​

​This keeps the UI responsive.​

​5. Optimize images​

​I ensure:​

​●​ ​Images are compressed​
​●​ ​Caching is enabled​
​●​ ​Correct resolution is used​

​Large uncompressed images slow rendering.​

​6. Test in release mode​

​Debug builds run slower, so before final judgment I test in release.​

​Q2: How do you manage large API responses efficiently?​
​Scenario​
​You receive thousands of records in one API call and the app becomes slow.​

​Answer​

​1. Avoid loading everything at once​

​Instead of fetching the full list, I prefer:​

​●​ ​Pagination​
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​●​ ​Infinite scroll​
​●​ ​Server-side filtering​

​This keeps memory stable.​

​2. Use FlatList virtualization​

​FlatList renders only visible items.​
​ScrollView renders everything.​

​So I always choose FlatList for large data.​

​3. Process data smartly​

​I avoid:​

​●​ ​Running heavy loops during render​
​●​ ​Re-parsing JSON multiple times​

​I:​

​●​ ​Clean and format data once​
​●​ ​Store processed data to reuse​

​4. Store large datasets efficiently​

​For persistent large data I use:​

​●​ ​SQLite​
​●​ ​Realm​
​●​ ​MMKV​

​AsyncStorage is fine only for small data.​

​5. Improve user experience​

​Instead of freezing, I:​

​●​ ​Show loading states​
​●​ ​Load pages gradually​
​●​ ​Avoid blocking UI​

​This keeps the app responsive and user-friendly.​

​Q3: How do you handle offline-first requirements?​
​Scenario​
​Your app must work even without the internet, and sync when connection returns.​
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